Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.982
Filtrar
1.
PLoS One ; 19(4): e0302251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635746

RESUMO

Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.


Assuntos
NAD , Degeneração Walleriana , Animais , Humanos , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , NAD/metabolismo , Drosophila melanogaster/metabolismo , Axônios/metabolismo , Bactérias/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
2.
Commun Biol ; 7(1): 412, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575808

RESUMO

The CLIP1-LTK fusion was recently discovered as a novel oncogenic driver in non-small cell lung cancer (NSCLC). Lorlatinib, a third-generation ALK inhibitor, exhibited a dramatic clinical response in a NSCLC patient harboring CLIP1-LTK fusion. However, it is expected that acquired resistance will inevitably develop, particularly by LTK mutations, as observed in NSCLC induced by oncogenic tyrosine kinases treated with corresponding tyrosine kinase inhibitors (TKIs). In this study, we evaluate eight LTK mutations corresponding to ALK mutations that lead to on-target resistance to lorlatinib. All LTK mutations show resistance to lorlatinib with the L650F mutation being the highest. In vitro and in vivo analyses demonstrate that gilteritinib can overcome the L650F-mediated resistance to lorlatinib. In silico analysis suggests that introduction of the L650F mutation may attenuate lorlatinib-LTK binding. Our study provides preclinical evaluations of potential on-target resistance mutations to lorlatinib, and a novel strategy to overcome the resistance.


Assuntos
Aminopiridinas , Carcinoma Pulmonar de Células não Pequenas , Lactamas , Neoplasias Pulmonares , Pirazóis , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Mutação , Proteínas do Citoesqueleto/genética , Receptores Proteína Tirosina Quinases/genética
3.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573307

RESUMO

The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.


Assuntos
Acrossomo , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Infertilidade Masculina/genética , Proteínas de Membrana/genética , Sêmen , Cabeça do Espermatozoide , Espermatozoides
4.
Sci Adv ; 10(11): eadk1890, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478604

RESUMO

Muscle contraction is a regulated process driven by the sliding of actin-thin filaments over myosin-thick filaments. Lmod2 is an actin filament length regulator and essential for life since human mutations and complete loss of Lmod2 in mice lead to dilated cardiomyopathy and death. To study the little-known role of Lmod2 in skeletal muscle, we created a mouse model with Lmod2 expressed exclusively in the heart but absent in skeletal muscle. Loss of Lmod2 in skeletal muscle results in decreased force production in fast- and slow-twitch muscles. Soleus muscle from rescued Lmod2 knockout mice have shorter thin filaments, increased Lmod3 levels, and present with a myosin fiber type switch from fast myosin heavy chain (MHC) IIA to the slower MHC I isoform. Since Lmod2 regulates thin-filament length in slow-twitch but not fast-twitch skeletal muscle and force deficits were observed in both muscle types, this work demonstrates that Lmod2 regulates skeletal muscle contraction, independent of its role in thin-filament length regulation.


Assuntos
Contração Muscular , Sarcômeros , Animais , Humanos , Camundongos , Proteínas do Citoesqueleto/genética , Coração , Camundongos Knockout , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Miosinas
5.
Chromosome Res ; 32(2): 6, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504027

RESUMO

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Assuntos
Cromossomos , Variações do Número de Cópias de DNA , Humanos , Inversão Cromossômica , Sequência de Bases , Células Germinativas , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
6.
Seizure ; 116: 87-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523034

RESUMO

OBJECTIVES: The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS: Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS: Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE: This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.


Assuntos
Epilepsia , Deficiência Intelectual , Malformações do Desenvolvimento Cortical , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas do Citoesqueleto/genética
7.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38507752

RESUMO

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Neuropatia Axonal Gigante , Criança , Humanos , Proteínas do Citoesqueleto/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Neuropatia Axonal Gigante/genética , Neuropatia Axonal Gigante/terapia , Transgenes , Injeções Espinhais
8.
Nat Microbiol ; 9(4): 1049-1063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480900

RESUMO

Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/metabolismo , Constrição , Óxido Nítrico Sintase/metabolismo
9.
Nat Microbiol ; 9(4): 1064-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480901

RESUMO

Bacterial cell division requires septal peptidoglycan (sPG) synthesis by the divisome complex. Treadmilling of the essential tubulin homologue FtsZ has been implicated in septal constriction, though its precise role remains unclear. Here we used live-cell single-molecule imaging of the divisome transpeptidase PBP2B to investigate sPG synthesis dynamics in Bacillus subtilis. In contrast to previous models, we observed a single population of processively moving PBP2B molecules whose motion is driven by peptidoglycan synthesis and is not associated with FtsZ treadmilling. However, despite the asynchronous motions of PBP2B and FtsZ, a partial dependence of PBP2B processivity on FtsZ treadmilling was observed. Additionally, through single-molecule counting experiments we provide evidence that the divisome synthesis complex is multimeric. Our results support a model for B. subtilis division where a multimeric synthesis complex follows a single track dependent on sPG synthesis whose activity and dynamics are asynchronous with FtsZ treadmilling.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Peptidoglicano , Proteínas do Citoesqueleto/genética , Parede Celular
10.
J Cell Mol Med ; 28(6): e18135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429900

RESUMO

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulação para Cima/genética
11.
Life Sci ; 341: 122504, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354973

RESUMO

Cingulin and its paralog paracingulin are vital components of the apical junctional complex in vertebrate epithelial and endothelial cells. They are both found in tight junctions (TJ), and paracingulin is also detectable in adherens junctions (AJ) as TJ cytoplasmic plaque proteins. Cingulin and paracingulin interact with other proteins to perform functions. They interact with cytoskeletal proteins, modulate the activity of small GTPases, such as RhoA and Rac1, and regulate gene expression. In addition, cingulin and paracingulin regulate barrier function and many pathological processes, including inflammation and tumorigenesis. In this review, we summarize the discovery and structure, expression and subcellular distribution, and molecular interactions of cingulin family proteins and discuss their role in development, physiology, and pathological processes.


Assuntos
Células Endoteliais , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Células Endoteliais/metabolismo , Relevância Clínica , Proteínas do Citoesqueleto/genética , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo
12.
Genes (Basel) ; 15(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397193

RESUMO

Glaucoma is a chronic optic neuropathy that leads to irreversible vision loss. Aging and family history are the two most important risk factors of glaucoma. One of the most studied genes involved in the onset of open-angle glaucoma is myocilin (MYOC). About 105 germline mutations within MYOC are known to be associated with glaucoma and result in endoplasmic reticulum (ER) stress, which leads to trabecular meshwork (TM) cell death and subsequent intraocular pressure (IOP) elevation. However, only about 4% of the population carry these mutations. An analysis of MYOC somatic cancer-associated mutations revealed a notable overlap with pathogenic glaucoma variants. Because TM cells have the potential to accumulate somatic mutations at a rapid rate due to ultraviolet (UV) light exposure, we propose that an accumulation of somatic mutations within MYOC is an important contributor to the onset of glaucoma.


Assuntos
Proteínas do Citoesqueleto , Proteínas do Olho , Glaucoma de Ângulo Aberto , Glaucoma , Glicoproteínas , Humanos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/genética , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma de Ângulo Aberto/genética , Glicoproteínas/genética , Mutação
13.
Stem Cell Res ; 76: 103362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417376

RESUMO

Familial hypertrophic cardiomyopathy (HCM) stands as a predominant heart condition, characterised by left ventricle hypertrophy in the absence of any associated loading conditions, with affected individuals having an increased risk of developing heart failure and sudden cardiac death (SCD). Two induced pluripotent stem cell (iPSC) lines were derived from peripheral blood mononuclear cells obtained from two unrelated individuals with previously reported nonsense mutations in the MYBPC3 gene. The first individual is a 48-year-old male (F26) with the MYBPC3 c.1731G > A HCM mutation, whereas the second individual is a 43-year-old female (F82) carrying the MYBPC3 c.2670G > A HCM mutation. The generated iPSCs exhibit appropriate expression of pluripotency markers, trilineage differentiation capacity and a normal karyotype. This resource contributes to gaining deeper insights into the pathophysiological mechanisms that underlie HCM.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Células-Tronco Pluripotentes Induzidas , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Códon sem Sentido , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares , Mutação , Proteínas do Citoesqueleto/genética
14.
Oncol Rep ; 51(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299234

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the seventh most commonly diagnosed cancer globally. HNSCC develops from the mucosa of the oral cavity, pharynx and larynx. Methylation levels of septin 9 (SEPT9) and short stature homeobox 2 (SHOX2) genes in circulating cell­free DNA (ccfDNA) are considered epigenetic biomarkers and have shown predictive value in preliminary reports in HNSCC. Liquid biopsy is a non­invasive procedure that collects tumor­derived molecules, including ccfDNA. In the present study, a droplet digital PCR (ddPCR)­based assay was developed to detect DNA methylation levels of circulating SEPT9 and SHOX2 in the plasma of patients with HNSCC. The assay was first set up using commercial methylated and unmethylated DNA. The dynamic changes in the methylation levels of SEPT9 and SHOX2 were then quantified in 20 patients with HNSCC during follow­up. The results highlighted: i) The ability of the ddPCR­based assay to detect very low copies of methylated molecules; ii) the significant decrease in SEPT9 and SHOX2 methylation levels in the plasma of patients with HNSCC at the first time points of follow­up with respect to T0; iii) a different trend of longitudinally DNA methylation variations in small groups of stratified patients. The absolute and precise quantification of SEPT9 and SHOX2 methylation levels in HNSCC may be useful for studies with translational potential.


Assuntos
Carcinoma de Células Escamosas , Ácidos Nucleicos Livres , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Metilação de DNA , Genes Homeobox , Carcinoma de Células Escamosas/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Reação em Cadeia da Polimerase , Proteínas do Citoesqueleto/genética , Ácidos Nucleicos Livres/genética , Neoplasias de Cabeça e Pescoço/genética , Biomarcadores Tumorais/metabolismo
15.
Acta Neuropathol Commun ; 12(1): 23, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331947

RESUMO

Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP). Our data demonstrate that after 16 weeks of elevated IOP, Sarm1 knockout (KO) mice retain significantly more RGC than control animals. Sarm1 KO mice also performed significantly better when compared to control mice during optomotor testing, indicating that visual function is preserved in this group. Our findings also indicate that Sarm1 KO mice display mild ocular developmental abnormalities, including reduced optic nerve axon diameter and lower visual acuity than controls. Finally, we present data to indicate that SARM1 expression in the optic nerve is most prominently associated with oligodendrocytes. Taken together, these data suggest that attenuating Sarm1 activity through gene therapy, pharmacologic inhibition, or NAD+ supplementation, may be a novel therapeutic approach for patients with glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Pressão Intraocular , NAD/metabolismo , Glaucoma/genética , Nervo Óptico/metabolismo , Axônios/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
16.
Life Sci ; 340: 122479, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301874

RESUMO

THE HEADINGS AIMS: DEAD-box helicase 27 (DDX27), a member of the DEAD-Box nucleic acid helicase family, holds an elusive role in oral squamous cell carcinoma (OSCC). This study aims to unravel the regulatory functions of DDX27 in OSCC and explore its downstream targets. MATERIALS AND METHODS: A commercial oral squamous cell carcinoma (OSCC) tissue microarray (TMA) was utilized. We analyzed differentially expressed genes in OSCC through the GEO database. Target gene silencing was achieved using the shRNA-mediated lentivirus method. Coexpedia analysis identified co-expressed genes associated with DDX27. Additionally, a Co-Immunoprecipitation (Co-IP) experiment confirmed the protein interaction between DDX27 and CSE1L. Xenograft tumor models were employed to evaluate DDX27's role in OSCC tumor formation. KEY FINDINGS: Elevated DDX27 expression in OSCC correlated with a higher pathological grade. DDX27 knockdown resulted in decreased cell proliferation, increased apoptosis, inhibited cell migration, and induced G2/M phase cell cycle arrest, as well as impaired tumor outgrowth. Coexpedia analysis identified STAU1, NELFCD, and CSE1L as top co-expressed genes. Lentiviral vectors targeting STAU1, NELFCD, and CSE1L revealed that silencing CSE1L significantly impaired cell growth, indicating it as a downstream target of DDX27. Cell rescue experiments demonstrated that increased DDX27 levels ameliorated cell proliferation, attenuated apoptosis, and CSE1L depletion blocked cell development induced by DDX27 overexpression. SIGNIFICANCES: This study highlighted DDX27 as a potential therapeutic target for OSCC treatment, shedding light on its crucial role in OSCC development. Targeting DDX27 or its downstream effector, CSE1L, holds promise for innovative OSCC therapies.


Assuntos
Carcinoma de Células Escamosas , Proteína de Suscetibilidade a Apoptose Celular , RNA Helicases DEAD-box , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas do Citoesqueleto/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/metabolismo , Proteína de Suscetibilidade a Apoptose Celular/metabolismo
17.
Exp Brain Res ; 242(3): 619-637, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231387

RESUMO

Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.


Assuntos
Anormalidades Múltiplas , Cerebelo , Anormalidades do Olho , Doenças Renais Císticas , Doenças Renais Policísticas , Retina , Animais , Camundongos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Domínios C2 , Cerebelo/metabolismo , Cerebelo/anormalidades , Cílios/genética , Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mutação/genética , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Retina/anormalidades
18.
Eur J Endocrinol ; 190(2): 151-164, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245004

RESUMO

OBJECTIVE: SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS: We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS: Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS: Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Resistência à Insulina , Insulinas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Fator de Crescimento Insulin-Like I , Resistência à Insulina/genética , Ciliopatias/genética , Anormalidades Múltiplas/genética
19.
J Biol Chem ; 300(2): 105620, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176648

RESUMO

Sterile alpha and HEAT/armadillo motif-containing protein (SARM1) was recently described as a NAD+-consuming enzyme and has previously been shown to regulate immune responses in macrophages. Neuronal SARM1 is known to contribute to axon degeneration due to its NADase activity. However, how SARM1 affects macrophage metabolism has not been explored. Here, we show that macrophages from Sarm1-/- mice display elevated NAD+ concentrations and lower cyclic ADP-ribose, a known product of SARM1-dependent NAD+ catabolism. Further, SARM1-deficient macrophages showed an increase in the reserve capacity of oxidative phosphorylation and glycolysis compared to WT cells. Stimulation of macrophages to a proinflammatory state by lipopolysaccharide (LPS) revealed that SARM1 restricts the ability of macrophages to upregulate glycolysis and limits the expression of the proinflammatory gene interleukin (Il) 1b, but boosts expression of anti-inflammatory Il10. In contrast, we show macrophages lacking SARM1 induced to an anti-inflammatory state by IL-4 stimulation display increased oxidative phosphorylation and glycolysis, and reduced expression of the anti-inflammatory gene, Fizz1. Overall, these data show that SARM1 fine-tunes immune gene transcription in macrophages via consumption of NAD+ and altered macrophage metabolism.


Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Neurônios , Animais , Camundongos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , ADP-Ribose Cíclica/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , NAD/metabolismo , Neurônios/metabolismo
20.
PLoS Genet ; 20(1): e1011034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198533

RESUMO

Most deleterious variants are recessive and segregate at relatively low frequency. Therefore, high sample sizes are required to identify these variants. In this study we report a large-scale sequence based genome-wide association study (GWAS) in pigs, with a total of 120,000 Large White and 80,000 Synthetic breed animals imputed to sequence using a reference population of approximately 1,100 whole genome sequenced pigs. We imputed over 20 million variants with high accuracies (R2>0.9) even for low frequency variants (1-5% minor allele frequency). This sequence-based analysis revealed a total of 14 additive and 9 non-additive significant quantitative trait loci (QTLs) for growth rate and backfat thickness. With the non-additive (recessive) model, we identified a deleterious missense SNP in the CDHR2 gene reducing growth rate and backfat in homozygous Large White animals. For the Synthetic breed, we revealed a QTL on chromosome 15 with a frameshift variant in the OBSL1 gene. This QTL has a major impact on both growth rate and backfat, resembling human 3M-syndrome 2 which is related to the same gene. With the additive model, we confirmed known QTLs on chromosomes 1 and 5 for both breeds, including variants in the MC4R and CCND2 genes. On chromosome 1, we disentangled a complex QTL region with multiple variants affecting both traits, harboring 4 independent QTLs in the span of 5 Mb. Together we present a large scale sequence-based association study that provides a key resource to scan for novel variants at high resolution for breeding and to further reduce the frequency of deleterious alleles at an early stage in the breeding program.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Animais , Suínos/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fenótipo , Frequência do Gene , Genótipo , Proteínas do Citoesqueleto/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...